FRUITY CHUTES

Rocketry Recovery Technology

Types of Parachutes
Packing Density - predicting packing volume using chute weight Deployment \& Packing Methodology

Types of Rocketry of Parachutes

- There are many styles of parachutes. We'll discuss the various styles, the advantages and disadvantages of chutes used for Rocketry

These include:
Cruciform - shaped like a cross
Flat Sheet Chutes - Top Flight
Rocket Man and TARC Style
Elliptical and Spherical (FC, and Spherachute) Pull down Apex, Toroidal (the Iris Ultra)

Challenge in Comparing Types

- Before we start there are challenges in comparing designs:

Inconsistency in how chute size is measured

- Flat chutes are fabric diameter
- Rocket Man chutes are measured across the top and sides.
- Cruciform is distance across chute
- Spherachute is circumference of canopy
- All FC chutes measured based on projected frontal area, i.e the opening diameter
Trying to spec Cd varies as a side effect of this Aerospace industry always specs the Cd in terms of projected frontal area being the gold standard in measurement
Choice of material greatly affects the bulk and packing volume

Cruciform - shape like a cross

- Advantages:

Very good high speed stability, stays above the load
Very strong
Simple design
Good as a high speed drogue parachute Used by the Aerospace industry on sonobuoys and other high speed deployment systems
Disadvantages:
Inefficient, Cd of approximately 0.4 , and Cd is difficult to measure accurately
Bulky for a given load

Sheet Chute - like Top Flight

- Advantages:

Simple Design
Low Cost
Disadvantages:
Inefficient, Cd of approximately 0.7
Bulky for a given load
Poor Stability, can oscillate above the load
Lower strength - this is partly due to materials selection

Rocket Man and TARC Style

- Advantages:

Good stability, stays above the load
Very strong, usually have over the top riser connections
Better efficiency than cruciform
Fewer risers to tangle - easier to untangle if they do
Probably most popular HP Rocketry style currently

Disadvantages:

Moderate, Cd of approximately 1 , no published info on this
Use heavier webbing for shroud lines (fewer connections to carry the load)
More complex design, two to three patterns shapes needed. Use a lot of tape reinforcement on edges and on all seams.
Can rotate under load due to variations in symmetry.
Can sometimes breathe under slower descent (similar to a jellyfish)

Elliptical and Spherical

- Advantages:

Good stability at lower speeds, stays above the load Good strength to weight compromise Good efficiency, Cd of about 1.5-1.6 Packs into smaller space
Repetitive design, one pattern shape, minimal room for variation Great shape for scale projects, looks nice in the air

Disadvantages:

At high speed it can wobble - always connect with a length of shock cord Multiple gores means more sewing and higher cost

Toroidal - Pull Down Apex

- A few facts - Design originally from 1890's! Rocket Rage sold these for awhile. Popular as reserve chutes for jumpers and hang gliders because of tight packing.
- Advantages:

Good stability at lower speeds, stays above the load
Good strength to weight compromise
Very high efficiency, Cd of about 2.2 - 2.4
Packs into smallest space, lightest weight
Simple repetitive design - only one pattern shape needed
Good anytime space and weight are critical
When efficiency is factored in then cost / load capability is the same as Elliptical
Disadvantages:
Not intended for higher speeds
Very fast opening, but this is mitigated by using a slider ring More complex to make, pull down adds to complexity

Packing Density
 Predicting packing volume using chute weight

- Since we started five years ago, the two most common questions are:

What size chute do we need?
A simple equation will tell us this as long as we know the Cd no guessing
How much space does it need? Now this is a trick to determine!

So we started to measure this by jamming a given size parachute into a piece of airframe and calculating the volume.
A common pattern showed up quickly, we could estimate the volume as a factor of the descent weight rating.

Packing Density
 Predicting packing volume using chute weight

- Refinement \# 1

The descent weight rating is directly related to the canopy area The canopy area is directly related to the weight

So why not just cut out the middleman and just weigh the chutes? That should correlate packing volume.

Packing Density
 Predicting packing volume using chute weight

- Refinement \#2

But people pack the chute differently and some methods are more dense than others.

A study done in June 1962 researched various methods of packing a chute and the achievable packing density. They found that putting a given type of material (such as nylon) under a given amount of pressure measured in PSI always results in the same $\mathrm{lb} / \mathrm{ft}^{3}$. For example, 15 psi gives you 30 $\mathrm{lb} / \mathrm{ft}^{3}$.

They also found that it is a non-linear relationship. It takes 100 psi to get to $43 \mathrm{lb} / \mathrm{ft}^{3}$

That the material at high pressure begins to "flow," but at too high a pressure there are abrasion issues and the material loses its integrity. 100 psi is a lot of pressure!

Packing Density

Predicting packing volume using chute weight

- Refinement \#3

So I try it myself! I had an idea that we can pack our lris chutes into a canister using a Pneumatic Press (the Peregrine IDS). So I made a test canister from 4" airframe and found I could pack my IFC-72" chute at 15 psi and into a volume that is equivalent to $30 \mathrm{lb} / \mathrm{ft}^{3}(0.28 \mathrm{oz} /$ cu in). I went back to the report and this exactly corresponded to their measurements done 50 years ago!

Packing Density
 Predicting packing volume using chute weight

- Converging on the Conclusion

I went back and looked at the empirical measurements we made over the years and finally determined that by using the correct packing density factor I can predict the packing volume accurately for any chute, any manufacturer, any style - now that is simple!

Packing Density
 Predicting packing volume using chute weight

- Where's the beef you ask?

Here are the factors we currently use and the packing method:
$0.13 \mathrm{oz} / \mathrm{in}^{3}$ - Fold and wrap - This is the most common technique used by Rocketry folks
$0.16-0.18$ oz/in ${ }^{3}$ - Soft Pack - Pack into a deployment bag packing as hard as possible by hand.
$0.22 \mathrm{oz} / \mathrm{in}^{3}$ - Jam pack by hand pressing into a piece of airframe. Use your hand as a press!
$0.28 \mathrm{oz} / \mathrm{in}^{3}$ - Hard Pack - Use a pneumatic press to pack the chute at 15 psi force. This technique is used by the Peregrine Integrated Deployment System. A 4 inch airframe needs 185 lb of packing force to achieve this. A 6 inch airframe needs 450 lb .

Packing Density
 Predicting packing volume using chute weight

- What it means - look at the Iris Ultra "Keviar " chute
The Iris Ultra K uses Kevlar shroud lines and harness, and it's very light and compact. Here are a few examples of how much space is needed: IFC-72-K, 3.9"D $\times 2.6^{\prime \prime} \mathrm{L}$, rated at 29 lb at $20 \mathrm{ft} / \mathrm{s}$ IFC-120K, 3.9"D x 7.4"L, 83 lb at $20 \mathrm{ft} / \mathrm{s}$ IFC-192K, 5.99"D x 7.5"L, 205 lb at $20 \mathrm{ft} / \mathrm{s}$

Packing Density
 Predicting packing volume using chute weight

- The Conclusion

This technique holds up for any manufacturer with any style. If it's nylon, it's simply a matter of weight.

Deployment Technology in Brief Also known as getting the laundry out!

- We will discuss several methods of chute deployment:

Traditional fold and wrap
Deployment Bags Integrated Deployment using the Peregrine

Deployment Technology in Brief Traditional Roll and Wrap

Simple to do and good when you have the space. Probably 90% of folks flying high power use this But...

Can tangle if wrap is not neat Hard to get the wrap correct for the diameter - loose or tight fit

Can unravel once in airframe Lowest density and can take the most space Not good if the packing length aspect ratio is over about 3:1 - can jam up...

Deployment Technology in Brief Deployment Bag

Recommended when the chute is large or the packing space is long and narrow (high aspect ratio)
Guarantees organized deployment, no tangles
Chute opens slower, less opening shock
Packing density higher than you can get with fold and wrap Adds extra protection against BP burns.
But...
You also need pilot chute Still need nomex blanket
Adds cost of the bag to your overall project cost.
Note: About $1 / 2$ of our larger chute work best with deployment bags. Not too scary once you know how they work!

Deployment Technology in Brief Getling the Laundry Out

- Black Powder Ejection

Very simple and reliable But...

Not for higher altitudes (> 20 k) unless measurements are taken
Lots of heat generated that can damage the chute
Deposits corrosive residue on everything - sulphur smell!
CO2 Deployment
Very clean
No altitude limit
But...
Weight impact
Some complexity to assemble
CO 2 is a little slower to apply pressure. Make sure you ground test!

Deployment Technology in Brief Peregrine IDS

Integrates CO2 deployment for pressure packed twist lock chute canister
Highest packing density, similar to military tech
Take several pre-loaded twist lock canisters into the field, no need to pack on site
Because of pressure packing, less CO2 needed to get a good ejection! 5 inch and 6 inch units have dual CO2 units.
Comes standard with Iris Ultra Kevlar Chute!
But...
More costly
Airframe needs to have compatible design
Current Peregrine is for UAV's. Rocket versions are coming soon!

